@r @l] euro Research Article: New Research

Novel Tools and Methods

Real-Time Closed-Loop Feedback in Behavioral
Time Scales Using DeeplLabCut

Keisuke Sehara,' Paul Zimmer-Harwood,? ®Matthew E. Larkum,! and ®Robert N. S. Sachdev’

https://doi.org/10.1523/ENEURO.0415-20.2021

TInstitute of Biology, Humboldt University of Berlin, Berlin D-10117, Germany and ?Department of Physiology,
Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom

Visual Abstract

Video acquisition
(16-bit grayscale)

'i DeepLabCut
w (DLC)

LED Output v -
board Evall;atlon
=========== -~

Computer vision approaches have made significant inroads into offline tracking of behavior and estimating ani-
mal poses. In particular, because of their versatility, deep-learning approaches have been gaining attention in
behavioral tracking without any markers. Here, we developed an approach using DeeplLabCut for real-time es-
timation of movement. We trained a deep-neural network (DNN) offline with high-speed video data of a mouse
whisking, then transferred the trained network to work with the same mouse, whisking in real-time. With this
approach, we tracked the tips of three whiskers in an arc and converted positions into a TTL output within be-
havioral time scales, i.e., 10.5 ms. With this approach, it is possible to trigger output based on movement of
individual whiskers, or on the distance between adjacent whiskers. Flexible closed-loop systems like the one
we have deployed here can complement optogenetic approaches and can be used to directly manipulate the
relationship between movement and neural activity.

Key words: behavioral tracking; closed-loop systems; deep-neural network

Significance Statement

Here, we deploy a deep-neural network (DNN)-based fast feedback method that can be used to reconfigure
feedback to mice based on the movement of particular whiskers, or on the distance between particular
whiskers. Our system generates feedback within 10.5 ms. Methods like the one we present here will steadily
become part of the standard toolset for manipulating the interaction between the animal and its environment
in behavioral time scales.

March/April 2021, 8(2) ENEURO.0415-20.2021 1-10

https://orcid.org/0000-0003-4368-8143
https://orcid.org/0000-0001-9799-2656
https://orcid.org/0000-0002-6627-0199
https://doi.org/10.1523/ENEURO.0415-20.2021

eMeuro

Introduction

Behavior is a sequence of motor actions controlled and
monitored by a pattern of neural activity that is distributed
throughout the brain. In most contexts, neural activity re-
lated to movement can be detected in a variety of cortical,
subcortical, brainstem and spinal circuits. Our toolset for
directly manipulating and monitoring neural activity is vast
and sophisticated. By comparison, the tools we have for
manipulating and monitoring behavior are somewhat
meager. Understanding the causal relationship between
neural activity and decision-making or movement requires
tools that work flexibly and rapidly.

High speed videography is a standard tool for monitoring
behavior and relating behavior post hoc to neural activity.
Traditionally, video data have been analyzed manually. More
recently, various algorithms have been developed for auto-
mating movement detection (Knutsen et al., 2005; Voigts et
al., 2008; Perkon et al., 2011; Clack et al., 2012; Ohayon et
al., 2013; Giovannucci et al., 2018; Dominiak et al., 2019;
Vanzella et al., 2019; Betting et al., 2020; Petersen et al,,
2020). With the development of DeepLabCut, a marker-less
pose-estimation toolkit based on deep learning (Mathis et al.,
2018), computer vision approaches are being used for moni-
toring poses of animals and for tracking the movement of vir-
tually any part of the body. The main advantage of
DeeplLabCut over other algorithms is that it can be deployed
on any and all parts of the body that are imaged in videos.
Furthermore, DeepLabCut is easy to use, and it is easy to
train with additional datasets.

These standard approaches for movement tracking
have been supplemented or complemented with real-time
monitoring and manipulation of behavior (Nashaat et al.,
2017; Cao et al., 2018; Sehara et al., 2019). One uses low
resolution, inexpensive, color tracking cameras for moni-
toring the movement and position of animals at a latency
of ~30 ms (Nashaat et al., 2017). A more recent approach

Received September 25, 2020; accepted January 26, 2021; First published

February 4, 2021.

The authors declare no competing financial interests.

Author contributions: K.S., P.Z.-H., and R.N.S.S. designed research; K.S.
performed research; K.S., P.Z.-H., M.E.L.,, and R.N.S.S. contributed
unpublished reagents/analytic tools; K.S. analyzed data; K.S., P.Z.-H., M.E.L.,
and R.N.S.S. wrote the paper.

This work was supported by the European Union’s Horizon 2020 Research
and Innovation Program and Euratom Research and Training Program
20142018 under Grant Agreement 670118 (to M.E.L.); the Human Brain
Project EU Grant 720270, HBP SGA1 “Context-Sensitive Multisensory Object
Recognition: A Deep Network Model Constrained by Multi-Level, Multi-
Species Data” (to M.E.L.); the Human Brain Project EU Grant 785907/HBP
SGA2 “Context-Sensitive Multisensory Object Recognition: A Deep Network
Model Constrained by Multi-Level, Multi-Species Data” (to M.E.L.); the Human
Brain Project EU Grant 945539/HBP SGA3 “Context-Sensitive Multisensory
Object Recognition: A Deep Network Model Constrained by Multi-Level, Multi-
Species Data” (to M.E.L.); and the Deutsche Forschungsgemeinschaft Grant
327654276 (SFB1315, to M.E.L.), 246731133 (to M.E.L.), 250048060 (to M.E.
L.), 267823436 (to M.E.L.), and 387158597 (to M.E.L.).

Correspondence should be addressed to Keisuke Sehara at keisuke.
sehara@gmail.com or Robert N. S. Sachdev at bs387ster@gmail.com.

https://doi.org/10.1523/ENEURO.0415-20.2021

Copyright © 2021 Sehara et al.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

March/April 2021, 8(2) ENEURO.0415-20.2021

Research Article: New Research 2 0of 10
used machine learning algorithms that work at a latency
of ~100ms or less (Cao et al., 2018). Yet another uses
neuromorphic cameras and has a much shorter latency
(2 ms) for tracking whiskers (Sehara et al., 2019). Here, we
describe a real-time DeeplLabCut implementation that
can be used to track movement at a resolution of 10—
15ms and generate triggers in real time at a latency of
10.5ms. We performed our proof-of-principle experi-
ments in the rodent whisker system, a complex sensori-
motor system which requires tracking of similarly shaped
tactile sensors, each moving at 20-25 Hz. We expect our
system to be applicable to real-time tracking of move-
ment of any set of body parts in almost any behavioral
application.

Materials and Methods

Animal experiments

All procedures using mice were performed in accordance
with protocols approved by the Charité-Universitdtsmedizin
Berlin and the Berlin Landesamt fir Gesundheit und Soziales
(LaGeSo) for the care and use of laboratory animals.

Animals

Six male C57BL/6 mice (RRID:IMSR_JAX:000664)
housed under a 12/12 h reverse light/dark cycle were
used in this study.

Surgery

Animals were anesthetized with ketamine/xylazine (90/
10 mg/kg body weight) and placed on a feedback-regu-
lated heating pad. After subcutaneous lidocaine injection,
skin and fascia were removed from the skull. A lightweight
aluminum headpost was attached to the skull using a
Rely-X (3 M) cement, followed in some cases by Jet
acrylic black cement (Dominiak et al., 2019; Sehara et al.,
2019). Animals were monitored during recovery and were
given antibiotics (enrofloxacin) and analgesics (buprenor-
phine and carprofen). After a recovery period, the animals
were habituated to the experimenter’s handling and to
being head-fixed at the setup.

Animal imaging setup

The mouse was head-fixed under infrared LED illumination
(Fig. 1A). A 16-bit grayscale camera (DMK 37BUX287,
Imaging Source) captured high-speed videos of mouse be-
havior from the top. For acquisition, a lens with 50-mm focal
length was used at /2.8. The exposure was set at 100-400
us. The acquired frames were transferred via USB3.1 (Gen.1)
communication to the host computer. To capture trigger out-
puts from the real-time tracking program, a 3-mm LED was
located on the side of the animal, in the field of view of the
camera. Each imaging session lasted for <15 min.

Imaging system

The host computer (3.6 GHz Intel Core i7-9700K, 64-
GB RAM) ran Ubuntu 18.04, and was equipped with the
NVIDIA GeForce RTX 2080 Ti graphics card (11-GB
RAM). We built a Python-based custom program (the
“Pose-Trigger” library), along with a thin wrapper python
library for DeeplLabCut-based real-time tracking (the

eNeuro.org

https://scicrunch.org/resolver/IMSR_JAX:000664
mailto:keisuke.sehara@gmail.com
mailto:keisuke.sehara@gmail.com
mailto:bs387ster@gmail.com
https://doi.org/10.1523/ENEURO.0415-20.2021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

e r{ euro Research Article: New Research 3 0of 10

A Video acquisition
(16-bit grayscale)

w (DLC)

LED Output
board "
e .
B (next C Inter-frame Processing
nex intervals time
came’? DLC (onGPU) fame) 7
: E20 20
o>
£
g 10 10
—& ® /x. 3 = i
Python A 10 20 0.0 0.5
Main process Trigger Target (ms) Fraction
D | evaluation: (Middle-whisker) > (Threshold) |
-11.53 ms 0.00 ms 12.76 ms

E | Evaluation: (Middle-whisker) — (Back-whisker) > (Threshold) |
-10.00 ms 0.00 ms 10.78 ms

Frame intervals

(Target = 10 ms) ON latency OFF latency
505 £05 £05
© =1 =1
o ® ®
w fine fine

0 0 0
0 10 20 0 10 20 0 10 20
(ms) (ms) (ms)

Figure 1. Proof of concept of real-time feedback based on whisker position. A, Schematic of the setup. The mouse was head-fixed
under the camera, and high-speed video was acquired under infrared (IR) illumination. Whisker positions were estimated from each
frame. Digital output, turning on an LED, was generated based on estimated positions using DeepLabCut. The inset shows the ex-
ample annotations based on the output. Estimated positions were stored after acquisition and used for post hoc annotation.
Arrowhead shows the estimated position of a whisker tip. Arrow points to the flashing LED. B, Flow of acquisition and trigger out-
put. Acquisition of a frame (blue) starts with a trigger being generated by the busy-wait algorithm. The acquired frame was passed
on to DeepLabCut-mediated body-part estimation (red) after subsampling the frame to half the original size. The status of trigger
output was determined based on the estimated body-part positions and was generated as TTL signal (green). C, Acquisition speed.
The effect of changing the busy-wait timer settings (x-axis) on the interframe acquisition intervals (median and 5% confidence inter-
vals of N =3000-3500 frames per setting). The right panel shows the average histogram for the total processing time per frame (me-
dian and best/worst cases out of N =6 sessions). Exposure of 400 us was used, and frames were subsampled to 320 pixels in width
before being processed. D, E, Example consecutive frames in a single representative session. The positions of three whiskers
(cyan, orange, green) on one side of the mouse’s face were estimated. Flashes of the LED in the field of view (arrowheads) reported
the generation of output triggers in real time. Videos in D, E differ in the way the estimated whisker positions were evaluated during
the session. In D, the trigger (arrowhead) was generated when the middle whisker (orange, arrows) protracted across the arbitrary

March/April 2021, 8(2) ENEURO.0415-20.2021 eNeuro.org

eMeuro

Research Article: New Research 4 of 10

continued

border (dotted lines). The color of the border and the arrow indicates the status of trigger output (white: off, orange: on). E, The trig-
ger was generated when the horizontal distance (arrows) between the two whiskers on the back (orange, green) went above the ar-
bitrary threshold. The color of the arrow indicates the status of trigger output (white: off, orange: on). Scale bars: 20 mm. F, Latency
profile during real-time acquisition and trigger generation (median and best/worst cases out of N = 26 videos from six behavioral
sessions taken from three animals). When the interframe intervals were targeted at 10 ms the resulting frame intervals (left), the trig-
ger on-event latency (center) and the trigger off-event latency were stable at ~10ms.

“diclib” library) to run image acquisition and feedback
generation (Fig. 1A,B). It runs in loops of image acquisi-
tion, position estimation, evaluation of positions, and
feedback trigger generation, optionally with storage of ac-
quired images and estimated positions into the disk. We
designed the program so that each step after image ac-
quisition can be separately turned on and off. To ensure
that we achieve the shortest interframe intervals, and to
keep frames from dropping, software triggers based on
the “busy wait” algorithm were generated within the script
and were used to capture each frame (Fig. 1C).

Image acquisition

Acquired frames had dimensions of 640 pixels (width)
and 480 pixels (height). We built a custom Cython (RRID:
SCR_008466)-based library (“timedcapture”) for manag-
ing image acquisition on top of the Video4Linux2 (V4L2)
layer. Although the library was optimized for the use with
our camera hardware, any V4L2-compliant camera can
be used. To reduce acquisition latency on the host com-
puter, the frame buffer size was set to one. To detect the
timing of frame capture events, the “strobe-trigger” digital
output of the camera was turned on during acquisition.

Position estimation

DeepLabCut 2.1.3 (Nath et al., 2019), with CUDA
Toolkit 10.1 and Tensorflow 1.13.1, was used to perform
marker-less position estimation. The “batch size” of the
deep-neural network (DNN) model was set to one, i.e., it
was designed to process one frame at a time. On top of
the trained DNN model, we added the “GPU-based infer-
ence stage” as it was introduced in DeepLabCut 2.1 (Nath
et al., 2019). The incoming image was transformed into 8-
bit grayscale. Before being fed to the DNN model, the
image size was down-sampled to 320 pixels in width (i.e.,
half the original size), unless otherwise specified, using
Python bindings of the OpenCV library (RRID:SCR_
015526; opencv-python, version 3.4.9.33; https://opencv.

org/).

Position evaluation

The experimenter could interactively enter the Boolean
expression to be evaluated while the program was
running (Fig. 1D,E). Thus, theoretically, any evaluation al-
gorithm can be implemented and changed without re-
installing or re-configuring of the program itself.

Output trigger generation

The Boolean result of the evaluation was transformed
into the TTL high or low level. To achieve this, we used a
combination of FastEventServer (https://doi.org/10.5281/
zenodo.3843624) and an Arduino-based single-board
driver (https://doi.org/10.5281/zenodo.3515999) that en-
abled trigger generation at a latency of ~100 us (Sehara

March/April 2021, 8(2) ENEURO.0415-20.2021

et al., 2019). Briefly, the server program received com-
mands from the client program via the fast User Datagram
Protocol (UDP), relayed them to the Arduino-based board
via the USB1.1 cable, and finally responded back to the
client program in UDP. The output TTL signal was con-
nected to a LED positioned inside the camera’s field of
view.

Data acquisition steps

During acquisition, the timestamps, frames, estimated
whisker positions, and the status of the TTL output were
first stored in memory, then once acquisition was finished
these data were written to disk as a zip file containing seri-
alized NumPy arrays (van der Walt et al., 2011). Two types
of timestamps were collected: the frame-start timestamp,
and the processing-end timestamp. The frame-start time-
stamp corresponds to the one obtained before triggering
acquisition of each video frame. The processing-end
timestamp occurred once the frame had been acquired
and an output trigger had been generated.

DNN models

We trained DNN models to estimate tips of three arc
whiskers with the aid of the DeeplLabCut 2.1.3 toolbox
(Nath et al., 2019). One model was trained specifically for
each mouse. As a base network of the DNN, the default
ResNet-50 was used. The labeled whisker tips varied
from one animal to another, depending on the length of
the animal’s whiskers at the beginning of the course of
behavioral sessions. We used the B2, C1, and B; the C2,
C1, and B; or the B1, C1, and B whiskers to train the
DNN model. Each DNN model detected a consistent set
of whisker tips throughout the whole period of behavioral
recordings.

Training of the models

Before starting any real-time feedback experiments, we
ran a behavioral session to acquire videos for offline train-
ing of the DNN model. A set of 30- to 60-s videos at 100-
Hz frame rate was acquired from each head-fixed mouse
whisking freely without any constraints or task. The mini-
batch K-means clustering method was used to extract
60-120 video frames in total from the set of videos to be
used as the training dataset. Training of the DNN models
typically required a total of one to three training sessions,
each comprising ~1,000,000 iterations. After each train-
ing session, 30 outlier frames were picked up from each
video and added to the training data, using the default
“jump” method provided in DeepLabCut 2.1 (Nath et al.,
2019).

eNeuro.org

https://scicrunch.org/resolver/SCR_008466
https://scicrunch.org/resolver/SCR_015526
https://scicrunch.org/resolver/SCR_015526
https://opencv.org/
https://opencv.org/
https://doi.org/10.5281/zenodo.3843624
https://doi.org/10.5281/zenodo.3843624
https://doi.org/10.5281/zenodo.3515999

eMeuro

Data analysis

Python (RRID:SCR_008394; version 3.7.7; van Rossum,
1995) was used to run post hoc analysis. In addition to the
Python DeepLabCut toolbox, the following libraries were
used during the analysis and annotation: NumPy (RRID:
SCR_008633; version 1.19.1; van der Walt et al., 2011),
SciPy (RRID:SCR_008058; version 1.5.2), matplotlib
(RRID:SCR_008624; version 3.0.3; Hunter, 2007), pandas
(RRID:SCR_018214; version 1.0.4; McKinney, 2010), sci-
kit-image (version 0.17.2; van der Walt et al., 2014), Neo
(RRID:SCR_000634; version 0.9.0; Garcia et al., 2014),
h5py (version 2.10.0; Collette, 2013), and Jupyter note-
book (RRID:SCR_013984). For post hoc annotation of vid-
eos, the pillow image processing library (version 7.1.2;
https://python-pillow.org/) and the Python bindings of the
OpenCYV library (RRID:SCR_015526; opencv-python, ver-
sion 3.4.9.33; https://opencv.org/) were used.

Latency profiling

During real-time experiments with the target interframe in-
tervals of 10 ms, (1) the strobe-trigger digital output from the
camera and (2) the pose-trigger output from the Arduino-
based board were recorded at 10 kHz per channel using the
Power1401 interface (CED) and Spike2 (RRID:SCR_000903).
The resulting Spike2 files (27 sessions in total from three ani-
mals) were used to compute interframe intervals and the
pose-trigger latency. For calculation of the time spent for in-
ternal procedures of our Python program, we recorded sys-
tem timestamps using the Python “time” module. To profile
the latency of image acquisition, timestamps were obtained
before and after the Python function call to acquire a frame,
and their differences were calculated. For estimation of the
time spent for position estimation using DeepLabCut, the net
duration including OpenCV-based down-sampling and
DeepLabCut method calls (i.e., the total time spent to pro-
cess the frame and obtain estimated positions) were meas-
ured. To profile latency for trigger generation, timestamps
were collected before and after one transaction of com-
mands, i.e., from the point when the client Python library dis-
patched the UDP packet to the server, to the point when the
server program responded back to the UDP packet after the
Arduino-based output board generated the trigger. For ex-
periments when we varied the target interframe intervals from
10 to 20 ms, the resulting intervals were computed based on
the frame-acquisition timestamps of the acquired videos.

Profiling of estimation accuracy

For each animal, 60 additional frames (20 from each 30-
s video) were extracted from the video and were manually
labeled independently of the training data using Imaged
(RRID:SCR_003070; https://imagej.nih.gov/). After train-
ing of the corresponding DNN model, the frames were
subsampled and fed to the model. The resulting whisker
positions were compared with the positions of manual la-
beling to compute error figures data from three animals
were pooled and summarized together.

Profiling of real-time trigger accuracy

For each animal, we trained a distinct set of DNN mod-
els that perform post hoc estimation of the “true” posi-
tions of whisker tips in videos of real-time trigger

March/April 2021, 8(2) ENEURO.0415-20.2021

Research Article: New Research 50f 10
generation. Based on this ground-truth data, kernel-den-
sity estimation was performed to generate event-density
distributions of the position-values being evaluated in real
time (i.e., the position of the middle whisker tip for the po-
sition-based evaluation, and the difference between the
positions of the two whisker tips for the spread-based
evaluation). A Gaussian distribution with a SD of 0.5 mm
was used as the density kernel. To compute the condi-
tional probability of trigger generation at each position,
the density distribution during the triggered time points
was divided by the distribution of the whole period of ac-
quisition. The cumulative probability distribution of a
Gaussian distribution was then fitted to the conditional
probability distribution to estimate the position and vari-
ability of trigger threshold. The mean of the fitted
Gaussian distribution was defined as the detected thresh-
old position (note that closer to the set value is a better es-
timate), whereas the 2x SD value was considered to be
the variability of the threshold (note that smaller values are
more accurate).

To prevent the trigger accuracy figures from varying
solely based on position-estimation accuracy, we used
videos that had the mean per-frame part-wise estimation
error of below 2 mm (whisker position-based triggering,
N =15 videos from six behavioral sessions from five ani-
mals; whisker spread-based triggering, N =8 videos from
four behavioral sessions from three animals).

Code and data availability

The code and the software described in our paper are
freely available online (Pose-Trigger, https://doi.org/
10.5281/zenodo0.4459345; diclib, https://doi.org/10.5281/
zenodo.4459239; timedcapture, https://doi.org/10.5281/
zenodo.4459208), and their source packages are avail-
able online at Python Package Index (PyPI, https:/pypi.
org/). The raw video data, the DeepLabCut models and the
analytical procedures used in this study are available freely
online (https://doi.org/10.12751/g-node.lgu2m0) and will
be available on request.

Results

Real-time trigger generation based on whisker
positions

Mice were head-fixed under the infrared illumination
while high-speed video frames were acquired from the
camera from above (Fig. 1A). To monitor the timing of
the TTL output, a LED positioned in the field of view of the
camera (Fig. 1A, inset, arrow) was set to flash in response
to each trigger, allowing simultaneous capture of whisker
positions in the video data and timing of the trigger sig-
nal. Our proof-of-concept experiment consisted of three
phases: (1) acquisition of training video data for the DNN
model; (2) training of the DNN model using DeepLabCut;
and (3) applying the DNN model to real-time body-part
estimation. Each training session for the DNN model
took ~12 h.

We set up our acquisition program so that whisker posi-
tion estimation and trigger output generation were com-
plete before the beginning of the acquisition of the next
video frame (Fig. 1B). With the use of a busy-wait

eNeuro.org

https://scicrunch.org/resolver/SCR_008394
https://scicrunch.org/resolver/SCR_008633
https://scicrunch.org/resolver/SCR_008058
https://scicrunch.org/resolver/SCR_008624
https://scicrunch.org/resolver/SCR_018214
https://scicrunch.org/resolver/SCR_000634
https://scicrunch.org/resolver/SCR_013984
https://python-pillow.org/
https://scicrunch.org/resolver/SCR_015526
https://opencv.org/
https://scicrunch.org/resolver/SCR_000903
https://scicrunch.org/resolver/SCR_003070
https://imagej.nih.gov/
https://doi.org/10.5281/zenodo.4459345
https://doi.org/10.5281/zenodo.4459345
https://doi.org/10.5281/zenodo.4459239
https://doi.org/10.5281/zenodo.4459239
https://doi.org/10.5281/zenodo.4459208
https://doi.org/10.5281/zenodo.4459208
https://pypi.org/
https://pypi.org/
https://doi.org/10.12751/g-node.lgu2m0

eMeuro

algorithm for triggering the acquisition of the next frame,
actual interframe intervals varied in the range of 10-20ms
(Fig. 1C, left, median and 5% confidence intervals are
shown for each condition). For the target interframe inter-
vals of 10 ms, the resulting intervals were 11.27 = 2.34 ms
(mean = SD, median 10.62 ms), or 91.02 = 11.41 Hz. The
variability in the interframe interval could be reduced by
setting target intervals to 18 ms or larger. The resulting in-
tervals then were 18.06 = 0.79 ms (55.43 = 1.48 Hz, mean
+ SD, median 18.00 ms). These results were consistent
with the profile of per-frame total processing time (Fig.
1C, right) which was 11.34 = 2.27 ms (mean = SD, grand
average of N=18,206 frames collected across sessions
with different target interval settings).

To demonstrate the real-time flexibility of our program,
we trained the DNN model to estimate tips of three
whiskers in an arc, and used different evaluation algo-
rithms for generating an output during a single behavioral
session (Fig. 1D,E; Movie 1). In one configuration, the pro-
gram was set to detect the position of a particular
whisker, so that the LED switched on when the tip of the
middle whisker was protracted across an arbitrary border
(Fig. 1D). In another configuration, the distance between
the two adjacent caudal whiskers was tracked, and the
LED was only activated when the distance between the
two whiskers was greater than an arbitrary threshold
value (Fig. 1E; Movie 2). In both cases, the LED turned on
one frame after the suprathreshold value was detected.

To measure the interframe intervals and feedback-trig-
ger output latency more directly, we separately recorded
the timing of the strobe-trigger output from the camera,
as well as the timing of the feedback-trigger output at
10kHz (Fig. 1F; Table 1). Our analyses revealed that,
when the interframe interval was targeted at 10 ms, the
actual interframe intervals we achieved occurred at
~10.9ms (91.7 Hz). The feedback-trigger output latency
was ~10.5ms.

Accuracy of real-time trigger generation

To examine how accurately triggers were generated in
real time, we trained a distinct set of DNN models that
perform post hoc estimation of the true positions of
whisker tips in videos of real-time trigger generation.
Using this ground-truth data, event-frequency histograms
were generated to estimate the conditional probability of
trigger generation at each whisker position (Fig. 2A,B).
Accuracy of real-time trigger generation could be then es-
timated as the mean and SD of the cumulative Gaussian
distribution being fitted to the conditional probability
distribution.

For both whisker position-based and whisker spread-
based real-time trigger generations, the detected thresh-
old value had a median accuracy of less than =1 mm (Fig.
2C; Table 2). The position-based trigger generation was
less variable (Fig. 2D, left; Table 2; median 1.10 mm,
mean = SD 1.59 +1.05 mm, N=15 videos) than the
whisker spread-based triggering which had a variance of
~3 mm (Fig. 2D, right; Table 2; median 3.34 mm, mean =
SD 3.69 + 1.90 mm, N =8 videos). Both values of variance
were well below the total variance in the values being

March/April 2021, 8(2) ENEURO.0415-20.2021

Research Article: New Research 6 of 10

Movie 1. Example annotated video in a single representative
session, when the position-based evaluation rule was applied.
Annotation was performed post hoc based on the acquired
data. Dots indicate the positions of three whiskers on one side
of the mouse’s face. Flashes of the LED in the field of view (top
left) reported the generation of output triggers in real time when
the middle whisker (orange) protracted across the arbitrary bor-
der (dotted lines). The color of the border indicates the status of
trigger output (white: off, orange: on). [View online]

evaluated in real time. The spread-based trigger genera-
tion also had higher threshold positions and was more
variable compared with the position-based trigger gener-
ation. These differences could be related to the fact that
the spread-based condition involved the estimation of the
positions of two whisker tips, thus doubling the positional
error compared with the evaluation based on the position
of a single whisker.

Latency profiling of DeepLabCut-based real-time
trigger generation

To understand the processes that contribute to the
~10.5-ms latency for generating an output, and to exam-
ine whether elements of the system could be sped up, we
measured the time spent in each step separately during
frame acquisition, whisker position estimation, and trigger

Movie 2. Example annotated video in a single representative
session, when the distance-based evaluation rule was applied.
The video was acquired during the same imaging session as in
Video 1 and was annotated post hoc. The trigger was generated
when the horizontal distance (arrow) between the two whiskers
(cyan, green) went above the arbitrary threshold. The color of
the arrow indicates the status of trigger output (white: off, or-
ange: on). During the time of acquisition, the position estimation
of the rostral-most tip (cyan) was unstable. Annotation was
turned off when the tip was too caudal, too far behind the cau-
dal-most tip (green). [View online]

eNeuro.org

https://doi.org/10.1523/ENEURO.0415-20.2021.video.1
https://doi.org/10.1523/ENEURO.0415-20.2021.video.2
https://doi.org/10.1523/ENEURO.0415-20.2021.video.1
https://doi.org/10.1523/ENEURO.0415-20.2021.video.1
https://doi.org/10.1523/ENEURO.0415-20.2021.video.2

e r{ euro Research Article: New Research 7 of 10

Table 1: Statistics of latencies

(per-video mean * std, ms) Mean Std Min 2.5% Median 97.5% Max

Frame intervals 10.90+0.18 1.78+0.37 9.77+0.05 9.91+0.04 10.35=0.10 16.38*=1.63 26.95*1.67
On-event latency 10.50+0.26 1.70+=0.47 8.38+2.94 9.48=*0.05 9.97 +0.16 15.44+1.97 20.67 +3.41
Off-event latency 10.50+0.29 1.69+0.49 8.35+x297 9.46=*0.61 9.97+0.21 15.03+2.08 21.22+3.27

The acquisition interval between frames, on-event latency, and off-event latency were summarized across multiple video acquisitions. For each parameter, the
mean, SDs (Std), minimum values (Min), 2.5th percentiles (2.5%), median, 97.5th percentiles (97.5%), and the maximum values (Max) were averaged. N = 26 vid-
eos from six behavioral sessions taken from three animals (out of 27 videos in total, one video was excluded because there were less than 30 on/off events during
the acquisition). Means and SDs are shown in milliseconds.

A | Position-based triggering Variability
I —
— Al AThreshold
=
% 600 & '
£ 400 g % Data
> 5 Fitted
g 200 .8
o , : : = i
-10 O 10
Position rel. to Position rel. to
threshold (mm) threshold (mm)
B | Spread-based triggering Variability
e
. AThreshold
= All —
e
5 600 p 1o
L 400) P Data
> ; i | == Fitted
‘2 200 o L
3 = === |
e ol - - a —
-10 -5 0 0 1
Value rel. to Value rel. to
threshold(mm) threshold (mm)
C D
E *k fs g
E5 £ 6
5 NS =
19} ° o | s
E O g <] !
s | T 24
0_—
Position Spread Position Spread
(N=15) (N=8) (N=15) (N=8)

Figure 2. Accuracy of real-time trigger generation. A, B, Estimation of the accuracy of triggers based on video data. Density of occur-
rence, i.e., the number of frames, was estimated for the whole acquisition period of a video (left panels, gray) and for the period when the
trigger was on (left panels, orange). The conditional probability of trigger generation was computed based on the two density distributions
(right panels, gray). A Gaussian distribution (right panels, magenta (A) or green (B)) was fitted to the conditional probability distribution to
estimate the difference between the set value and the actual threshold position (AThreshold) and the variability in the occurrence of the
triggers (variability, double-headed arrows). The actual and estimated thresholds could vary by 1 mm. The density/counts in A are from a
representative video where position-based triggers were generated, whereas the density/counts in B are from another representative
video where triggers were generated based on the distance between whiskers. C, D, Summary of all position-based and spread-based
acquisitions. The box plots are in the style of Tukey. For both conditions, the difference between the actual threshold position and the set
value (C) was <1 mm on average, although the detected threshold value was significantly different from the value being set during acqui-
sition (position-based, p =0.0637, NS; spread-based, **p =0.0078; Wilcoxon signed-rank test). Variability of trigger generation (D) was 1-
3 mm on average. Compared with the whisker position-based trigger generation, the whisker spread-based triggering was less accurate.
N =15 videos (six behavioral sessions from five animals) for position-based trigger generation, and N =8 videos (four behavioral sessions
from three animals) for spread-based trigger generation.

March/April 2021, 8(2) ENEURO.0415-20.2021 eNeuro.org

@r{ euro Research Article: New Research 8 of 10

Table 2: Per-video accuracy of real-time trigger generation

(values are in mm) Mean Std Min 25% Median 75% Max
AThreshold Position-based -0.18 0.44 -0.81 -0.39 —0.21 -0.11 0.94
Spread-based 1.10 0.91 0.15 0.47 0.63 1.85 2.44
Variability Position-based 1.59 1.05 0.90 1.03 1.10 1.41 4.34
Spread-based 3.69 1.90 1.95 2.21 3.34 415 7.50

In the top row (AThreshold), the average difference between the actual threshold and the value being set during acquisition for each video is shown. The bottom
rows (variability) show the average variability in the threshold in individual videos. N =15 videos (six behavioral sessions from five animals) for position-based trig-
ger generation, and N = 8 videos (four behavioral sessions from three animals) for spread-based trigger generation.

generation (Fig. 3). Acquisition of a video frame, with the close to the limit that our setup can achieve. The results of
size of 640 x 480 pixels, took 2.36 = 0.02ms (mean = SD, our profiling imply that there are bottlenecks in the steps
median 2.36 ms) for our default configuration of 400 us of data transfer between different devices.

exposure. When we lowered the exposure down to 5 s, it
still took 1.97 = 0.09 ms (mean = SD, median 1.98 ms) to
acquire a single frame (Fig. 3A). The lower bound of
~2ms presumably corresponds to the time spent in
transferring the frame data from the camera to the host
computer. Our results are comparable to the theoretical
minimum latency of 0.98 ms when a 16-bit image with the
size of 640 x 480 pixels is transferred through USBS3.1
communication (which has a theoretical maximum of 5
Gbps for generation 1).

For whisker position estimation, we measured the la-
tency and accuracy at different settings of frame sizes
(Fig. 3B). Here, the latency measure included the time
spent for frame subsampling and position estimation. We
subsampled the frame to the width of 320 pixels during
our animal imaging experiments. The latency for this con-
figuration was 8.08 =1.44ms (mean = SD, median
7.86ms). Even when we used only 10 pixel-wide frames Challenges toward real-time multi-whisker detection
to pass on to the DNN model, the latency was In the last 20 years, multiple research groups have re-
6.43+=1.08ms (mean *= SD, median 6.49ms; Fig. 3B, ported increasingly sophisticated, easy-to-use tools for
left). On the other hand, the accuracy of the estimation = automated annotation of video data of animal behavior
was significantly worse when frame size was reduced to (Knutsen et al., 2005; Voigts et al., 2008; Perkon et al.,
less than half the original size (Fig. 3B, right). 2011; Clack et al., 2012; Ohayon et al., 2013; Giovannucci

Output triggers took only 0.10 £0.04 ms (mean = SD, et al., 2018; Dominiak et al., 2019; Vanzella et al., 2019;
median 0.08 ms, N=3000 frames; Fig. 3C). This latency Betting et al., 2020; Petersen et al., 2020). One natural ex-
was negligible compared with that of the acquisition and tension of this ability has been to apply these algorithms
estimation steps. Together, under the conditions we used for on-line, closed-loop paradigms, where changes in be-
here, we conclude that the current trigger-output latency havior of the animal are detected as rapidly as possible,
of 10.5ms and the current interframe interval of 11msis and the behavior is used to modify or manipulate the

Discussion

Here, we implemented DeeplLabCut-mediated real-time
feedback generation based on whisker positions. Our
system can work at 80-90 Hz and can reliably generate an
output in 10.5 ms. These values are within behavioral time
scales (Bittner et al., 2017; Isett et al., 2018). This work
highlights the fact that real-time feedback generation sys-
tems face a trade-off between speed and accuracy.
Body-part estimation can be sped up by subsampling
video frames, without any large degradation in accuracy.
This strategy is likely to be suited to DNN model-based
position estimation approaches including DeeplLabCut
because of their robust estimation based on noisy
images.

A Camera B Position estimation C Trigger output
5 ' 60
m g1s £
Ea = = =
>10 > S.50
9 = @ 30 S
3?2 ® 5 3 L 25
© - 9
| <
0 0 0 0
012 100 300 500 100 300 500 0 01 0.2
Exposure (ms) Image width (px) Image width (px) Latency (ms)

Figure 3. Profiling real-time acquisition procedures. A, The latency to frame acquisition (y-axis) for different exposure settings was
calculated. Median values from 2000 frames (640 x 480 pixels in size) per exposure setting are plotted. The results were so stable
that 5% confidence intervals are not visible in the plot. B, Latency (left) and accuracy (right) of DeepLabCut-mediated position esti-
mation, using our model of whisker-position estimation from 180 frames acquired from three animals for each estimation condition.
The latency estimation was made with both OpenCV-based subsampling and DeepLabCut-based body-part estimation. Dots repre-
sent the median values, and error bars stand for 5% confidence intervals. C, Histogram of latency to output trigger generation. The
output was turned on and off repeatedly for 3000 times, and the time spent for the Python call was measured each time.

March/April 2021, 8(2) ENEURO.0415-20.2021 eNeuro.org

eMeuro

brain, the virtual environment or the context of behavior.
From this perspective, the rodent whisker system, which
has been a model system for understanding brain circuits
related to sensory perception, movement and plasticity
(Sachdev et al., 2001; Feldman and Brecht, 2005; Brecht
et al., 2006; Diamond et al., 2008; Hooks, 2017), poses
some unique challenges. Mice and rats have ~30 similarly
shaped whiskers on each side of the face, and they can
sweep them back and forth at 10-25 Hz.

Alternatives to video-based real-time tracking do exist
to overcome these challenges. For example, it is possible
to use EMG for tracking the movement of the whiskers
and whisker pad (Kleinfeld et al., 2002; Sachdev et al.,
2003). It is also possible to attach a reflective marker to a
whisker and optoelectronically track whisker movements
reliably at high speeds (Bermejo et al., 1998). But ap-
proaches using EMG can be invasive and not targeted to
individual whiskers. Tracking with reflective markers can
be clumsy and limited to single whiskers. More recently, it
has become possible to use neuromorphic approaches to
achieve rapid (<3 ms) tracking of whiskers (Sehara et al.,
2019). Another method has used a color-tracking camera
to track multiple whiskers (Nashaat et al., 2017), with a la-
tency of ~30ms, which is two to three times slower than
the ~10-ms behavioral time scale (Bittner et al., 2017;
Isett et al., 2018). In addition, this method requires placing
UV paint to whiskers every day. Although some of these
earlier methods can achieve closed-loop latencies in
tracking whiskers that are in behavioral time scales, these
methods are either invasive or require markers, or are
non-trivial to apply for real-time tracking of multiple ap-
pendages (i.e., whiskers) moving independently and
rapidly.

DeepLabCut and other DNN-based marker-less ap-
proaches have a significant advantage over almost all
earlier methods for offline pose estimation, and offline
body-part tracking. Our current work extends the use of
these approaches for real-time marker-less tracking of
multiple whiskers. A few recent studies have made forays
into real-time tracking with DeepLabCut (Forys et al,
2020; Kane et al., 2020). The first study using this ap-
proach demonstrated control of mouse behavior by re-
warding particular forelimb movements, achieving a real-
time tracking latency of 50ms (Forys et al., 2020). The
other one, using a different approach, has achieved a la-
tency of 10 ms (Kane et al., 2020). But to achieve a 10-ms
latency, Kane and colleagues subsampled each frame
and restricted the resolution of video frames to ~150 pix-
els in diameter. While this approach can work for tracking
of limbs, it is not likely to be effective for tracking individu-
al whiskers (compare Fig. 3B). In addition, it is not clear
whether the video frames used for tracking are in fact
being saved to disk for additional analysis.

One challenge that real-time tracking with video data
poses is the computational cost of tracking objects from
video frames. Fortunately, the power of processors and
algorithms has increased and this has enabled processing
of individual frames in <10 ms (Knutsen et al., 2005;
Voigts et al., 2008; Perkon et al., 2011; Clack et al., 2012;
Ohayon et al., 2013; Cao et al., 2018; Dominiak et al.,

March/April 2021, 8(2) ENEURO.0415-20.2021

Research Article: New Research 9 of 10
2019; Betting et al., 2020; Petersen et al., 2020). By com-
parison, little progress has been made to enhance acqui-
sition latency of frames, i.e., the time required to transfer
video frames between devices. As we document here, it
can take milliseconds just to obtain a video frame (com-
pare Fig. 3). Optimization of hardware/software interac-
tion will be necessary to develop faster real-time tracking
algorithms.

Here, by optimizing the acquisition and tracking proce-
dures, we have built a system that is capable of closed-
loop trigger generation in real time at 10.5-ms latency.
The DNN-based approach affords the possibility of track-
ing body parts consistently across behavioral sessions
without using any artificial markers. Triggers can be gen-
erated based on whisker position or on any other features
of facial expression that are relevant for inferring the inter-
nal states of rodents (Dominiak et al., 2019; Stringer et al.,
2019; Dolensek et al., 2020). In addition, our system im-
plements the posture-evaluation mechanism that is easy
to edit or update on-line during experiments. The ap-
proach we have developed here provides a generic real-
time solution for any researcher in the field of behavioral
neurophysiology.

Bottlenecks of DNN-based tracking approaches

Profiling of our system revealed the major bottlenecks
in the DNN-based approaches (Fig. 3). One major issue is
the communication between devices: between the cam-
era and the computer, and between the CPU memory and
the GPU memory. The time required for body-part estima-
tion using an image has a lower bound of around 6 ms, re-
gardless of the number of pixels used. Considering the
efficiency of the GPU during computation of the DNN
model, and the fact that DeeplLabCut runs faster in the
batch mode (Mathis and Warren, 2018), it is reasonable to
suspect that the transfer of the data to the graphics card
is limiting the speed during this process.

Similar issues exist in the image acquisition and transfer
from the camera to the host computer. Unlike frame-less
real-time feedback approaches which can generate trig-
ger outputs in ~2ms (Sehara et al., 2019), frame-based
approaches take milliseconds just to obtain an image
from the camera. While most open-loop video applica-
tions minimize the data transfer latency by allocating a
buffer for incoming video frames, this strategy is not suita-
ble for closed-loop applications that aim to minimize the
latency from acquisition of an image to its processing.

There are several additional procedures for reducing
the latency to output trigger generation using image-proc-
essing based real-time feedback systems. One effective
procedure would be the use of more compact DNN mod-
els such as MobileNetV2 (Mathis et al., 2019). It could
help reduce the load on the GPU and thus could lead to
higher efficiency in body-part estimation (Kane et al.,
2020). Restricting the region of interest in video frames
could also help keep accuracy from degrading while
speeding up the estimation process (Nath et al., 2019;
Sehara et al., 2019).

It would be also beneficial to use a predictive model to
compute future positions of the body parts (Kane et al.,

eNeuro.org

eMeuro

2020). Assuming a certain restricted dynamics in the pat-
tern of movement, predictions could work to detect a ster-
eotypic pattern of movements one frame before it takes
place (Kane et al., 2020). But the predictions might not be
applicable for fast motion with large degrees of freedom
where the implicit assumptions of the model may not al-
ways apply.

DNN-based approaches in the field of neuroscience
have been evolving rapidly. Based on the same approach
we used here on pose estimation, one could well imagine
a DNN-based real-time feedback-generation system for
other modalities, such as facial expression, vocalization,
or population neural activity. Methods like ours are likely
to contribute to the interrogation of relationships between
virtual worlds, behavior and neural activity.

References

Bermejo R, Houben D, Zeigler HP (1998) Optoelectronic monitoring
of individual whisker movements in rats. J Neurosci Methods
83:89-96.

Betting J-H, Romano V, Al-Ars Z, Bosman LWJ, Strydis C, De Zeeuw
Cl (2020) WhiskEras: a new algorithm for accurate whisker track-
ing. Front Cell Neurosci 14:588445.

Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC (2017)
Behavioral time scale synaptic plasticity underlies CA1 place
fields. Science 357:1033-1036.

Brecht M, Grinevich V, Jin TE, Margrie T, Osten P (2006) Cellular
mechanisms of motor control in the vibrissal system. Pflugers
Arch Eur 453:269-281.

Cao Z, Hidalgo G, Simon T, Wei S-E, Sheikh Y (2018) OpenPose:
realtime multi-person 2D pose estimation using part affinity fields.
arXiv 2017-Janua:1302-1310.

Clack NG, O’Connor DH, Huber D, Petreanu L, Hires A, Peron S,
Svoboda K, Myers EW (2012) Automated tracking of whiskers in
videos of head fixed rodents. PLoS Comput Biol 8:61002591.

Collette A (2013) Python and HDF5. Cambridge: O’Reilly.

Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar
E (2008) “Where” and “what” in the whisker sensorimotor system.
Nat Rev Neurosci 9:601-612.

Dolensek N, Gehrlach DA, Klein AS, Gogolla N (2020) Facial expres-
sions of emotion states and their neuronal correlates in mice.
Science 368:89-94.

Dominiak SE, Nashaat MA, Sehara K, Oraby H, Larkum ME, Sachdev
RNS (2019) Whisking asymmetry signals motor preparation and
the behavioral state of mice. J Neurosci 39:9818-9830.

Feldman DE, Brecht M (2005) Map plasticity in somatosensory cor-
tex. Science 310:810-815.

Forys BJ, Xiao D, Gupta P, Murphy TH (2020) Real-time selective
markerless tracking of forepaws of head fixed mice using deep
neural networks. eNeuro 7:ENEURO.0096-20.2020.

Garcia S, Guarino D, Jaillet F, Jennings T, Prépper R, Rautenberg
PL, Rodgers CC, Sobolev A, Wachtler T, Yger P, Davison AP
(2014) Neo: an object model for handling electrophysiology data in
multiple formats. Front Neuroinform 8:10.

Giovannucci A, Pnevmatikakis EA, Deverett B, Pereira T, Fondriest J,
Brady MJ, Wang SSH, Abbas W, Parés P, Masip D (2018)
Automated gesture tracking in head-fixed mice. J Neurosci
Methods 300:184-195.

Hooks BM (2017) Sensorimotor convergence in circuitry of the motor
cortex. Neuroscientist 23:251-263.

Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci
Eng 9:90-95.

Isett BR, Feasel SH, Lane MA, Feldman DE (2018) Slip-based coding
of local shape and texture in mouse S1. Neuron 97:418-433.e5.

March/April 2021, 8(2) ENEURO.0415-20.2021

Research Article: New Research 10 of 10

Kane G, Lopes G, Saunders JL, Mathis A, Mathis MW (2020) Real-
time, low-latency closed-loop feedback using markerless posture
tracking. bioRxiv. doi: 10.1101/2020.08.04.236422.

Kleinfeld D, Sachdev RNS, Merchant LM, Jarvis MR, Ebner FF (2002)
Adaptive filtering of vibrissa input in motor cortex of rat. Neuron
34:1021-1034.

Knutsen PM, Derdikman D, Ahissar E (2005) Tracking whisker and
head movements in unrestrained behaving rodents. J Neurophysiol
93:2294-2301.

Mathis A, Warren R (2018) On the inference speed and video-com-
pression robustness of DeeplLabCut. bioRxiv. doi: 10.1101/
457242.

Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW,
Bethge M (2018) DeepLabCut: markerless pose estimation of
user-defined body parts with deep learning. Nat Neurosci 21:
1281-1289.

Mathis A, Yuksekgonil M, Rogers B, Bethge M, Mathis MW (2019)
Pretraining boosts out-of-domain robustness for pose estimation.
arXiv 1909.11229.

McKinney W (2010) Data structures for statistical computing in
Python. In: Proceedings of the 9th Python in Science Conference
(van der Walt S, Millman J eds), pp 56-61.

Nashaat MA, Oraby H, Pefia LB, Dominiak S, Larkum ME, Sachdev
RNS (2017) Pixying behavior: a versatile real-time and post hoc au-
tomated optical tracking method for freely moving and head fixed
animals. eNeuro 4:ENEURO.0245-16.2017.

Nath T, Mathis A, Chen AC, Patel A, Bethge M, Mathis MW (2019)
Using DeeplLabCut for 3D markerless pose estimation across spe-
cies and behaviors. Nat Protoc 14:2152-2176.

Ohayon S, Avni O, Taylor AL, Perona P, Roian Egnor SE (2013)
Automated multi-day tracking of marked mice for the analysis of
social behaviour. J Neurosci Methods 219:10-19.

Perkon 1, KoSir A, Itskov PM, Tasi¢c J, Diamond ME (2011)
Unsupervised quantification of whisking and head movement in
freely moving rodents. J Neurophysiol 105:1950-1962.

Petersen RS, Colins Rodriguez A, Evans MH, Campagner D, Loft
MSE (2020) A system for tracking whisker kinematics and whisker
shape in three dimensions. PLOS Comput Biol 16:e1007402.

Sachdev RNS, Jenkinson E, Zeigler HP, Ebner FF (2001)
Sensorimotor plasticity in the rodent vibrissa system. In: Mutable
brain (Kaas JH, ed), pp 152-200. London: CRC.

Sachdev RNS, Berg RW, Champney G, Kleinfeld D, Ebner FF (2003)
Unilateral vibrissa contact: changes in amplitude but not timing of
rhythmic whisking. Somatosens Mot Res 20:163-169.

Sehara K, Bahr V, Mitchinson B, Pearson MJ, Larkum ME,
Sachdev RNS (2019) Fast, flexible closed-loop feedback: track-
ing movement in “real-millisecond-time.” eNeuro 6:ENEURO.0147-
19.2019.

Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M,
Harris KD (2019) Spontaneous behaviors drive multidimensional,
brainwide activity. Science 364:eaav7893.

van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a
structure for efficient numerical computation. Comput Sci Eng
13:22-30.

van der Walt S, Schonberger JL, Nunez-lglesias J, Boulogne F,
Warner JD, Yager N, Gouillart E, Yu T; the scikit-image contribu-
tors (2014) scikit-image: image processing in Python. Peerd 2:
e453.

van Rossum G (1995)
Wiskunde & Informatica.

Vanzella W, Grion N, Bertolini D, Perissinotto A, Gigante M, Zoccolan
D (2019) A passive, camera-based head-tracking system for real-
time, three-dimensional estimation of head position and orienta-
tion in rodents. J Neurophysiol 122:2220-2242.

Voigts J, Sakmann B, Celikel T (2008) Unsupervised whisker tracking
in unrestrained behaving animals. J Neurophysiol 100:504-515.

Python tutorial. Amsterdam: Centrum

eNeuro.org

http://dx.doi.org/10.1016/s0165-0270(98)00050-8
https://www.ncbi.nlm.nih.gov/pubmed/9765121
http://dx.doi.org/10.3389/fncel.2020.588445
https://www.ncbi.nlm.nih.gov/pubmed/33281560
http://dx.doi.org/10.1126/science.aan3846
https://www.ncbi.nlm.nih.gov/pubmed/28883072
http://dx.doi.org/10.1007/s00424-006-0101-6
https://www.ncbi.nlm.nih.gov/pubmed/16736208
http://dx.doi.org/10.1371/journal.pcbi.1002591
https://www.ncbi.nlm.nih.gov/pubmed/22792058
http://dx.doi.org/10.1038/nrn2411
https://www.ncbi.nlm.nih.gov/pubmed/18641667
http://dx.doi.org/10.1126/science.aaz9468
https://www.ncbi.nlm.nih.gov/pubmed/32241948
http://dx.doi.org/10.1523/JNEUROSCI.1809-19.2019
https://www.ncbi.nlm.nih.gov/pubmed/31666357
http://dx.doi.org/10.1126/science.1115807
https://www.ncbi.nlm.nih.gov/pubmed/16272113
http://dx.doi.org/10.1523/ENEURO.0096-20.2020
http://dx.doi.org/10.3389/fninf.2014.00010
https://www.ncbi.nlm.nih.gov/pubmed/24600386
http://dx.doi.org/10.1016/j.jneumeth.2017.07.014
https://www.ncbi.nlm.nih.gov/pubmed/28728948
http://dx.doi.org/10.1177/1073858416645088
https://www.ncbi.nlm.nih.gov/pubmed/27091827
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/j.neuron.2017.12.021
https://doi.org/10.1101/2020.08.04.236422
http://dx.doi.org/10.1016/S0896-6273(02)00732-8
https://www.ncbi.nlm.nih.gov/pubmed/12086648
http://dx.doi.org/10.1152/jn.00718.2004
https://www.ncbi.nlm.nih.gov/pubmed/15563552
https://doi.org/10.1101/457242
https://doi.org/10.1101/457242
http://dx.doi.org/10.1038/s41593-018-0209-y
https://www.ncbi.nlm.nih.gov/pubmed/30127430
http://dx.doi.org/10.1523/ENEURO.0245-16.2017
http://dx.doi.org/10.1038/s41596-019-0176-0
https://www.ncbi.nlm.nih.gov/pubmed/31227823
http://dx.doi.org/10.1016/j.jneumeth.2013.05.013
https://www.ncbi.nlm.nih.gov/pubmed/23810825
http://dx.doi.org/10.1152/jn.00764.2010
https://www.ncbi.nlm.nih.gov/pubmed/21307326
http://dx.doi.org/10.1371/journal.pcbi.1007402
https://www.ncbi.nlm.nih.gov/pubmed/31978043
http://dx.doi.org/10.1080/08990220311000405208
https://www.ncbi.nlm.nih.gov/pubmed/12850826
http://dx.doi.org/10.1523/ENEURO.0147-19.2019
http://dx.doi.org/10.1126/science.aav7893
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.7717/peerj.453
https://www.ncbi.nlm.nih.gov/pubmed/25024921
http://dx.doi.org/10.1152/jn.00301.2019
https://www.ncbi.nlm.nih.gov/pubmed/31553687
http://dx.doi.org/10.1152/jn.00012.2008
https://www.ncbi.nlm.nih.gov/pubmed/18463190

	Real-Time Closed-Loop Feedback in Behavioral Time Scales Using DeepLabCut
	Introduction
	Materials and Methods
	Animal experiments
	Animals
	Surgery
	Animal imaging setup

	Imaging system
	Image acquisition
	Position estimation
	Position evaluation
	Output trigger generation
	Data acquisition steps

	DNN models
	Training of the models

	Data analysis
	Latency profiling
	Profiling of estimation accuracy
	Profiling of real-time trigger accuracy
	Code and data availability

	Results
	Real-time trigger generation based on whisker positions
	Accuracy of real-time trigger generation
	Latency profiling of DeepLabCut-based real-time trigger generation

	Discussion
	Challenges toward real-time multi-whisker detection
	Bottlenecks of DNN-based tracking approaches

	References

